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The acquisition behavior of completely digital first and second-order phase-
locked loops is considered. It is shown that modeling the loop by its difference
equations allows the acquisition behavior to be computed using a procedure
wherein the number of computations as well as the required storage grow only
linearly with the size of the state space. It is also shown that the procedure can
be easily modified to include the effects of doppler, finite length accumulators,

and initial phase estimate jamming.

I. Introduction

At present very little is known analytically about the
acquisition behavior of phase-locked loops. The primary
reason for this is that the linearizing or simplifying as-
sumptions used in calculating steady-state performance
parameters are not applicable when, the loop is in the
acquisition mode. However, if one considers completely
digital phase-locked loops (Refs. 1, 2), then any imple-
mentation of such a loop is necessarily a finite state
machine. In such cases if one is given an initial state
distribution vector, then one can, at least in principle,
compute any subsequent time-state distribution vector
by considering the loop as a finite state Markov chain
and multiplying the initial state distribution vector by
the appropriate power of the Markov transition matrix.
Unfortunately the number of computations as well as the
storage required for this procedure both increase as the
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square of the size of the state space, making such a pro-
cedure quite unattractive for all but the smaller state
spaces. For example, Chadwick (Ref. 3) used this tech-
nique to compute the acquisition behavior of a digital
tracking loop which, even after restricting himself to a
most likely subset of the state space, resulted in a one-
step Markov transition matrix having 6.25 X 10° entries.

The important point, which seems to have been over-
looked in the past, is that for tracking loops of the kind
described in Refs. 1 and 2 most of the entries in the
Markov transition matrix are zeros. Consequently, if one
characterizes the loop by its difference equations then
only the essential computations need be performed. This
results in a tremendous savings both in computations and
storage. In this article we will use the difference equation
approach for computing acquisition performance of first-
and second-order digital loops. We will see that this
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approach can be easily modified to include the effects of
finite accumulators (for the second-order loop) and dop-
pler. Finally, we will show how this approach can be
used to evaluate the merits of initial phase estimate jam-
ming,.

ll. First-Order Loop

Consider the completely digital first-order phase-
locked loop shown in Fig. 1. In this loop the input signal
(a squarewave signal immersed in additive white gauss-
ian noise) is filtered, sampled at the Nyquist rate and is
‘applied to the transition sample selector. The transition
sample selector, which is controlled by the phase shifter,
extracts the sample of the input signal which is believed
to have occurred at the transition of the received signal
and corrects for the expected sign of this sample. The
result is then accumulated until a sufficiently high signal-
to-noise ratio is obtained to estimate (with high proba-
bility) whether the loop reference supplied by the phase
shifter is leading or lagging the received signal. If the
reference is leading the received signal, the accumulator
will accumulate positively whereas it will accumulate
negatively if the reference is lagging. After the accumu-
lation has been completed, the sign of the accumulator
output is used to shift or bump the phase of the loop
reference signal one step in the direction to reduce the
expected phase error, and the accumulator is reset.

The steady-state behavior of such a loop has been
amply studied by Holmes (Ref. 1). For the acquisition
behavior let us consider that the phase bump size is 2=/K
radians. Then the loop can be considered as a Markov
chain having K states. Let us consider (without loss of
generality) that the phase of the received signal is zero.
Furthermore, we will take the pessimistic approach by
assuming that the phase error when the loop is in the kth
state ¢y is

@k )

¢x = -———K-—r—radians (1)
for k=1, 2, ~~-,—K~,and
2
oy = wradians (2)
K
for
K K
k—?+1,—2—+2, ,K

A state diagram for this loop is shown in Fig. 2.
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We now define the state probability vector

$:(1)

8 = St('z) (3)

S¢<K) _

where s,(k) is the probability of being in state k at time ¢.
Since the loop is discrete, we assume that ¢ belongs to the
index set (ie., ¢t £ {0,1,2, ---}). Then, from Fig. 2 and the
theory of Markov chains we know that

St — [P] So (4)

where s, is the initial state distribution vector and P is
the K by K one-step Markov transition matrix given by

0 p - .
qg 0
K
0 _
q p 3
qg 0 p
P= 9 09q 4 (5)
g 0 q
p 0 q
p 0 ¢q

In this equation p is the probability that the accumula-
tion will cause a phase bump in the direction to decrease
the phase error, ¢ = 1 — p, and the blanks are assumed
to be filled with zeros.

In order to compute the state probability distribution
after one accumulation using this procedure we must
store (aside from the distribution vectors themselves) a
matrix having K? entries and perform K? computations.
However, if one characterizes the loop by its stochastic
difference equations, a tremendous savings in both stor-
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age and computations is achieved. In particular we note that the loop can be characterized by

psi (k+ 1) + pse(
ps(k+ 1) +gs, (k-- 1);
seoa(k) = ( gso(k + 1) + gs; (k — 1);
gsi (k +1) + ps; (k — 1);
psi(k+1—

(k—1+ K);

K) + ps: (k —

k=1
e[2,K/2 — 1]
k=K/2,K/2+1 (6)

ke[K/2+2,K—1]

1); k=K

By using this characterization the one-step probability distribution vector can be computed with only 2K computations
and with a storage only slightly greater than that required to store the probability vectors themselves.

Ill. Second-Order Loop

The first-order loop of Fig. 1 can be converted to a
second-order loop by inserting a filter of the form shown
in Fig. 3 between the accumulator sign detector and the
phase shifter. The effect of this filter is to cause the
phase shifter to be bumped by

u'n+ x,

units where ¢ = + 1 is the output of the accumulator
sign detector, n is an integer gain factor and x. is the
value (after u is added) of the loop filter accumulator.
For such loops one must specify the values of two state
variables in order to characterize the state of the loop.
We shall use the instantaneous phase error, as we did in

variable is fixed at some value. Note, however, that for
the second-order loop no transitions within a given ring
are allowed (except possibly at the extremes which will be
considered later) and that only certain transitions be-
tween rings are allowed. One can further visualize this
series of rings as forming a tube with each ring on the
tube being rotated about the tube axis by an amount
dependent on the location of the ring (value of x.) as
well as the value of n.

With this picture in mind, let us define s; (k, 1) as the
probability of being in the kth error state at time ¢ with
a loop filter value of 2. We can further consider a ring
probability vector

the first-order case, for one of these variables and the st (1, )
output x, of the loop filter summer as the other. 5 (2, 1)
It is convenient to view the state space of the second- se() = ' (7)
order loop as a series of rings similar to the one shown
in Fig. 2, where each ring corresponds to all possible
values of instantaneous phase when the second state s¢ (k1)
The loop stochastic difference equations are (assuming no restriction on £):
a) [2]<n
psik+ 0 +nl—-1)+psi(k+2+K—nl+1) ke [1,n — 1]
K
psik+2+n -1 +gs;(k+21—n1+ 1) ke \:n—2+1, 5 —n~2j|
K K
Sear (k) = (gsi(k+2+n2—1)+gsi(k+2—n 2+ 1) ke —O——n*2+l,—2—-+n~1 (8a)

gsilk+21+ni-1) +ps;k+2t—n1+ 1)

psik+i+n—Kli—-1)+ps;k+2—nl+1),
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ke[—§—+n—2+l,K—n—ﬂ}

ke[K*ﬂAﬂ%‘l,K]
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(b) 1< —n

gsi(k+n+2+K2i~-1D+ps;(k+K+2—nl+1),
psitk+n+4L0—1)+psi(k+2—n 2+ 1);

ke[1, —n— 1]
ke[l —n—2,n— 1]

psi(k+n+4L,2—-1)+qgs; (k+1—n, 0+ 1) ke n~£+1,§—n—l:l
Ste1 (k> 2) = - (Sb)
gs:(k+n+0L,0—1)+qse(k+1—n 0 +1); keLg—n—£+1,§+n~l‘J
K
gsitkt+tn+ L0 -1 +psyk+21—nl+1); ke 7+n—2+1,Ki|
and
(c) I>n
K
psi(k+2+nl—1)+gqgs;k+21—n 2+ 1) ke[l,—g—n—ﬂ]
K
gs:(k+24+nf—1)+gs:(k+2—n+1) ks[——n—2+l,2 +n~ﬂ]
St+1(k9 'Q) = (80)

psik+2+nl—1)+ps,(k+2—nh+ 1)

2
K
gse(k+ 2+ nl—1)+pse(k+21—n 0+ 1) ke[?+n—2+l,K—n~2:|

ke[K—n—2+1,K+n—1]

pse(k+2+n—K2—1)+gsi(k+2—n—K2+1); ke[ K+n—1+1,K]

where it is assumed that the interval (set) [a,b] is empty if b < a.

As in the first-order case, we see that the amount of
storage necessary to accommodate these equations is
essentially the same as the amount of storage necessary
to store the state probabilities. Therefore, the storage
grows linearly with the range of £ (=x,). Note also that
the number of computations grows linearly with the size
of the state space.

IV. Practical Considerations
(a) Accumulator Truncation

In any implementation of a discrete second-order
phase-locked loop, the accumulator in the loop filter will
have a finite range. For example, we will let x,e [ Ly,
L. ]. This is equivalent to placing saturating boundaries
at the Lo, and Ly, rings of the tubular state space. Any
attempt to penetrate beyond the Ly {Lyi,) ring results
in a transition back onto a state in the Lyay (Lmin) ring.
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The difference equations of the second-order loop can
be easily modified to accommodate this saturation of the
state space. First, we note that each of the expressions
in Eq. (8) is of the form

St+1 (k,l.) = 0S; (k’,l - 1) + ,BSt <k”,£ + 1)

over the appropriate range of k. If 1 is one of the satu-
rating boundaries, then one of the two rings (2 + 1) or
(£ — 1) does not exist. In fact, the only way to get to the
th ring is to either be on the interior ring next to £ or
to be on the Ith ring already. As a consequence, we see
that if £ = L,,,, then we can add the set of equations

St (k:Lma.x) = as: (k’,Lmax_ 1) + as (k’;Lmax) (9)

over the appropriate range of k and where the quantities
a and k’ are determined by the range of £ in equation 8§
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corresponding to f = Ly,,. Similarly, if 2 = L, then
we add the equations
Sty (k;Lmin) = BS[ (k”,Lmin) + ,Bst (k,,;Lmin+1>
(10)
again over the appropriate ranges of k. Thus, the Egs.

(8) apply to all interior rings and one need only add the
set of modified equations for each boundary ring.

(b) Doppler

The eftects of doppler can be quite easily handled pro-
vided one is willing to use a finite-state approximation
approach. For example, if a loop has K phase error states
and phase bumps every ¢,, seconds then one can approx-
imate a doppler offset of D/Kt,, Hz (D an integer) by
cyclically shifting each ring probability vector by D
positions after each phase bump interval. If D is not an
integer then one can either bound the desired result by
using the appropriate neighboring integer or can further
approximate by periodically selecting the amount of
cyclic shift from a set of neighboring integers.

V. Initial Phase Estimate Jamming

Let us now assume that the received signal

s(t,&) = Asgn {sin[wt + £]} (11)

where

T ™
s [‘ 16’ Ts']
and is uniformly distributed in this interval. Assume also
that s(t,£) is to be correlated over the interval

L[ _MT MT
'{ 2 72

with each of the reference signals

s;(t) = sgn {Sin[uﬂf + &1)

where

i 2=
éi ~§andT ——W

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

If we denote

M*T
Reiy :/ : s(t,€)s:(t)dt (13)
-M*T

2

and perform the integration, we obtain

SAiM*T (1 — é’fi - ED ;
?—AiM*T (1 -

We note that if A; = A Eq. (14) does not include the
effects of doppler. To include doppler, one need only
replace A; by a4(i)A where

i= 176,87

Re(i) = ori=8andé>0

§l>, i=8andé<0
(14)

G,](i) - (15)
is the effective signal loss factor due to doppler. Expres-

sions necessary for computing a4i) are given in the
Appendix.

We next allow s(¢,£) to be received in additive white
gaussian noise n(t) of one sided spectral density N, W/Hz.
We also define the noisy correlator output by

g2i(¢) =/ ’ [s(t.&) + n(t)]si(t)dt; i=-—7,-6,--78

M*T
2 (16)
We note that the g;(£) can be expressed as
80(£) = Re(0) + 2_mi = 3 n (17)

g.(é) = Re(1) + inl — i n; + 2n., — 2n, (18)

i=1
etc., where the ni’s, i = =1, +2, .-+, #-8 are independent
zero-mean gaussian random variables with variance

NM*T
32

The purpose of all this is to select the & corresponding
to the most likely phase of s(t,£) so that the loop can be
initially set (i.e., jammed) to that phase. Of primary in-
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terest is the mean square phase error immediately after
the phase jamming. We shall be satisfied with computing
a close bound to this mean square error. Toward this end,
we note that

Pr{go = maxg;} <Pr{g,> g} Pr{g > g}

= [’/2 + Y% erf (______Rg(O) — Rell) >:|
NM*T
2

. Rg(0) — Re(—1)
X [% + Y erf (W)} (19)
2

as well as

Pr{g; =maxg;} <Pr{g > g}

- [v T thert (Mﬂ )
NM*T|i
V 2 (20)
Finally, we note that

B¢~ 819 < B~ 816 =55}

is

= (162)2 {Z (1—2)¢Pr{g = mjaxgj}

i=-7

+ 225 Pr {gs = max gj}} (21)
7

N :
where £ is the estimated phase. Substituting (19) and (20)
into (21) yields the final bound.

VI. Examples
(a) First-Order Loop

The acquisition performance of a first-order loop hav-
ing 256 states is shown in Figs. 4 and 5. It is assumed that
the loop is updated (bumped) every M cycles of the
received signal and that the initial phase estimation is
based on an observation of the signal for M* = NM
cycles. For N =0 (i.e., no initial estimation), the initial
state distribution vector is uniform. For N > 0, the mean
square phase error due to phase estimation is first com-
puted using the results of Section V. The initial state
distribution is then taken as a quantized gaussian distri-
bution with zero mean and this mean square error as a
variance. The time axes have been normalized by the
time required for M cycles (t.;).
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Figure -4 represents the acquisition behavior when the
loop update SNR

 MTA?

p NA =25

and when no doppler is present. Figure 5 illustrates the
behavior under the same conditions, except that a dop-
pler offset was simulated by cycling the state probability
vector one position every two updates.

{(b) Second-Order Loop

Figures 6 to 8 demonstrate the acquisition behavior of
a second-order loop similiar to the one described in
Ref. 4. Here the phase variable has 256 discrete values
and the proportional control gain factor n = 4. The range
of the second state variable x, was restricted to the inter-
val [—3, 4]. Figure 6 shows the acquisition with no
doppler. Figures 7 and 8 illustrate the acquisition be-
havior when the numbers of doppler-generated shifts per
loop update are 2 and 4, respectively.

(¢) Discussion

By examination of Figs. 4 to 8, we see that if one is
interested in fast acquisition then a large portion of the
acquisition time should be allocated to phase estimate
jamming. This is particularly true for the first-order loop,
since the closed-loop time constant is generally quite
large. For the second-order loop much less is to be
gained by jamming unless the doppler offset is quite
large. Note, however, that the doppler cannot be allowed
to increase indefinitely since, as is shown in the appendix,
if the estimator integration time equals the time needed
to accumulate one complete doppler shifted cycle, the
received signal will be orthogonal to all estimator refer-
ence signals.

VIl. Summary

Described herein is a procedure for computing acqui-
sition performance of first- and second-order digital loops
which requires only a linear increase in storage and
computations with the size of the state space. The pro-
cedure was found to be easily modified to account for
finite accumulators and doppler. Expressions for the
initial state mean square error after phase jam estimation
were developed and several examples were presented to
show the relative merits of phase jamming as an initial
part of acquisition.
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Fig. 1. First-order phase-locked loop biock diagram

Fig. 3. Second-order digital PLL loop filter
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Fig. 2. Representation of state space for first-order PLL
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Fig. 4. Acquisition performance of first-order
digital loop (no doppler)
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Fig. 5. Acquisition performance of first-order digital loop Fig. 6. Acquisition performance of second-order
(one doppler state shift every two updates) loop (no doppler)
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Fig. 7. Acquisition performance of second-order loop
(2 doppler shifts per update)
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Fig. 8. Acquisition performance of second-order loop
(4 doppler shifts per update)
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Appendix

Signal Correlation in the Presence of Doppler

Consider a reference signal s(t) of the form

s(t) = sgn {sin [W,(¢t — 6)]}

and a received signal of the form
§(t) = Asgn {sin [W,(t — #)]}

Let the two signals be correlated for a time interval of M*T seconds where T = 2x/W, and M* is an even integer
The correlator output at the end of this interval will be

M*T
== w « CiCjsin [(kw0 + IW,) 5 ]
e st (dt =2 2 2 L (A1)
2

where

2exp (—kWo8) ; k odd

Ck = _—
7k7r

0 ; k even

and

, 2A exp (—jkW,#)
Ck - ik 5
k=

k odd

; k even
Substituting the C’s into (A-1) and defining

gives

MxT
Cs(t)s(nde = —824 30 5o S USM'n] i i
[M*T s(t)s'(¢) kz: ; T TEWE = W] [kW, cos (kW ,6) cos (AW.&) + AW, sin (kW,6) sin (AW ,#)]
k

= 1
2 odd ! od

-

=Y
=%

(A-2)

Now let us assume that #’ is uniformly distributed and define for T’ = 2-/W, the intervals

L (. (@G- 1T @+ )T .
A1~{0'.————82—§0<T i=012 15

Furthermore, assume that if #ea’,
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then

o= IT (A3)

for Je {0,1, -+~ ,15}. Note that for § small, then T’~ T and 4 corresponds to the midpoint of one of the 16 intervals A’;.
Next, define B;(J,3,M") as the average over #’eA} when § is given by (A-3). Performing this average yields

» Sin [28M*x] sm(ie)

. 16)2 ©
BUIMM) = = —5-A %, 2 TETows = vl
kodd 1o d
X [(kWo — IW,) cos <(k gl)m - kgr) + (kW, + W) cos <(k _82)7” — kén)] (A-4)

It is our intent to average (A-4) over the 16 values of i. However, in most practical systems some band limiting exists,
and hence the use of equations which display unlimited harmonic content is quite unnecessary. Therefore, we will
restrict equation (A-4) to summations up to the seventh harmonic. Then, averaging over i we get

, sin((8 — k)sM*x )cos(,;6> (’%”) - in (knsM® )Sm( 11<6>COS (k_éz)

BUAM) = (167 AM'T\ 3 —— et T o6 - B T 2K ioM”
k odd k odd

However, if § is small, the second term dominates the equation so that

k odd

= B(JA) (A-5)

where
A =8&M"*

Equation (A-5) represents the average signal correlation of a reference signal and a signal which is uniformly dis-
tributed in an interval J sixteenths of a period away from the reference.

Finally, we note that if the doppler goes to zero then

B\ =0) = AMT 3 (16)*sin (2(%)) s (ké,,>

k odd

The ratio

B(J,A)
B(Jx=0)

can be considered as the effective signal reduction factor due to doppler.
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Figure A.1 illustrates the behavior of |B(J,A)| (after normalization) as a function of A, the number of doppler-shifted
cycles contained in the signal correlation integration time. It is instructive to note that as A increases the peaks of the
triangular squarewave correlation curve are suppressed more than the interior points. This causes the correlation
function or S-curve to become more rounded. This rounding continues until the integration time encompasses one
complete doppler-shifted cycle at which time the received signal is orthogonal to all of the reference signals.
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